Seven drug-resistant strains of Stenotrophomonas maltophilia were isolated from patients at two university hospitals in Nepal. S. maltophilia JUNP497 was found to encode a novel class A β-lactamase, KBL-1 (Kathmandu β-lactamase), consisting of 286 amino acids with 52.98% identity to PSV-1. Escherichia coli transformants expressing bla(KBL-1) were less susceptible to penicillins. The recombinant KBL-1 protein efficiently hydrolyzed penicillins. The genomic environment surrounding bla(KBL-1) was a unique structure, with the upstream region derived from strains in China and the downstream region from strains in India. S. maltophilia JUNP350 was found to encode a novel 6'-N-aminoglycoside acetyltransferase, AAC(6')-Iap, consisting of 155 amino acids with 85.0% identity to AAC(6')-Iz. E. coli transformants expressing aac(6')-Iap were less susceptible to arbekacin, amikacin, dibekacin, isepamicin, neomycin, netilmicin, sisomicin and tobramycin. The recombinant AAC(6')-Iap protein acetylated all aminoglycosides tested, except for apramycin and paromomycin. The genomic environment surrounding aac(6')-Iap was 90.99% identical to that of S. maltophilia JV3 obtained from a rhizosphere in Brazil. Phylogenetic analysis based on whole genome sequences showed that most S. maltophilia isolates in Nepal were similar to those isolates in European countries, including Germany and Spain. IMPORTANCE The emergence of drug-resistant S. maltophilia has become a serious problem in medical settings worldwide. The present study demonstrated that drug-resistant S. maltophilia strains in Nepal harbored novel genes encoding a class A β-lactamase, KBL-1, or a 6'-N-aminoglycoside acetyltransferase, AAC(6')-Iap. Genetic backgrounds of most S. maltophilia strains in Nepal were similar to those in European countries. Surveillance of drug-resistant S. maltophilia in medical settings in Nepal is necessary.
Stenotrophomonas maltophilia from Nepal Producing Two Novel Antibiotic Inactivating Enzymes, a Class A β-Lactamase KBL-1 and an Aminoglycoside 6'-N-Acetyltransferase AAC(6')-Iap.
来自尼泊尔的嗜麦芽窄食单胞菌产生两种新型抗生素灭活酶,即 A 类 β-内酰胺酶 KBL-1 和氨基糖苷 6'-N-乙酰转移酶 AAC(6')-Iap
阅读:3
作者:Kawauchi Ryota, Tada Tatsuya, Sherchan Jatan B, Shrestha Shovita, Tohya Mari, Hishinuma Tomomi, Kirikae Teruo, Sherchand Jeevan B
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2022 | 起止号: | 2022 Aug 31; 10(4):e0114322 |
| doi: | 10.1128/spectrum.01143-22 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
