The statistical reliability of diffusion property measurements was evaluated in ten healthy subjects using deterministic fiber tracking to localize tracts affected in motor neuron disease: corticospinal tract (CST), uncinate fasciculus (UNC), and the corpus callosum in its entirety (CC), and its genu (GE), motor (CCM), and splenium (SP) fibers separately. Measurements of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (lambda(1)), transverse diffusivity (lambda( perpendicular)), and volume of voxels containing fibers (VV) were obtained within each tract. To assess intra-rater and inter-rater reliability, two raters carried out fiber tracking five times on each scan. Scan-rescan and longitudinal reliability were assessed in a subset of four subjects who had six scans, with two sets of three scans separated by 1 year. The statistical reliability of repeated measurements was evaluated using intraclass correlation coefficients (ICC) and coefficients of variation (CV). Spatial agreement of tract shape was assessed using the kappa (kappa) statistic. RESULTS: Repeated same-scan fiber tracking evaluations showed good geometric alignment (intra-rater kappa >0.90, inter-rater kappa >0.76) and reliable diffusion property measurements (intra-rater ICC >0.92, inter-rater ICC >0.77). FA, MD, and lambda( perpendicular) were highly reliable with repeated scans on different days, up to a year apart (ICC >0.8). VV also exhibited good reliability, but with higher CVs. We were unable to demonstrate reproducibility of lambda(1). Longitudinal reliability after one year was improved by averaging measurements from multiple scans at each time point. Fiber tracking provides a reliable tool for the longitudinal evaluation of white matter diffusion properties.
Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study.
扩散张量成像中纤维追踪测量在纵向研究中的可靠性
阅读:5
作者:Danielian Laura E, Iwata Nobue K, Thomasson David M, Floeter Mary Kay
| 期刊: | Neuroimage | 影响因子: | 4.500 |
| 时间: | 2010 | 起止号: | 2010 Jan 15; 49(2):1572-80 |
| doi: | 10.1016/j.neuroimage.2009.08.062 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
