Endothelial-Enriched lncRNA Gm39822 Modulates Inflammation and Dysfunction in Non-Diabetic Endothelial Cells.

内皮细胞富集的 lncRNA Gm39822 调节非糖尿病内皮细胞的炎症和功能障碍

阅读:8
作者:Chandra Amit, Bektik Emre, Randhawa Vinay, Feinberg Mark W
Endothelial dysfunction underlies several vascular complications, including diabetes and atherosclerosis. However, the underlying role of long non-coding RNAs (lncRNAs) remains poorly understood. This study elucidated the role of lncRNA Gm39822 in regulating endothelial dysfunction under healthy and diabetic conditions. Our data revealed that Gm39822 is enriched and upregulated in non-diabetic endothelial cells when exposed to high glucose or inflammatory cytokines (TNF-α and IL-1β). Gm39822 overexpression promoted the expression of vascular cell adhesion molecule-1 (VCAM-1) and the adhesion of leukocytes in non-diabetic ECs but not in diabetic ECs. Conversely, Gm39822 silencing reduced VCAM1 expression and leukocyte adhesion in non-diabetic ECs and not in diabetic ECs. Gm39822 deficiency reduced the expression of inflammatory mediators (including p-P65, P65, P50, p-P38, P38, P-ERK1/2, and ERK1/2) in non-diabetic ECs. Furthermore, Gm39822 knockdown inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting that Gm39822 regulates EC inflammatory responses. Mechanistically, we identified C1D, a nuclear-enriched corepressor, as an interacting partner of Gm39822 that could play an important role in mediating Gm39822 functions in non-diabetic ECs. Collectively, our results identify a novel lncRNA Gm39822 and provide insights into the molecular mechanisms underlying endothelial dysfunction. These findings highlight Gm39822 as a potential therapeutic target for mitigating vascular complications associated with non-diabetic endothelial dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。