Ultra-low-loss tunable piezoelectric-actuated metasurfaces achieving 360° or 180° dynamic phase shift at millimeter-waves.

超低损耗可调谐压电驱动超表面,可在毫米波下实现 360° 或 180° 动态相移

阅读:6
作者:Vassos Evangelos, Churm James, Feresidis Alexandros
Phase shifting metasurfaces typically consist of an ordered metallic geometry that is patterned onto a dielectric substrate and incorporate active devices or materials that enable dynamic tuning. Existing methods at mm-wave and submillimeter bands typically suffer from high losses, which are predominantly produced by the inherent limitations of the tuning elements or materials. This report presents a new, ultra-low-loss and phase-tunable, reflection type metasurface design, which outperforms previously reported technologies in terms of phase shifting and loss. The proposed technique utilizes a variable air cavity, formed between a periodic array and a ground plane, which is controlled by means of a piezoelectric actuator. Two metasurface designs are presented and experimentally tested. Firstly, a square patch element metasurface that is capable of achieving a continuous 180° phase shift across a wide bandwidth, between 35 and 65 GHz. Also presented is a double-cross element metasurface that provides full 360° phase control between 57 and 62 GHz. The variable air cavity is controlled by means of a piezoelectric actuator that supports and varies the height of a ground plane, providing highly accurate, millisecond, displacement. Unlike conventional tuning methods, the tuning mechanism, in this case the moving ground plane, introduces no additional sources of loss and enables an average loss performance of 1 dB. Full-wave simulations are presented and experimentally validated with measurements of both metasurface prototypes. The proposed approach is scalable from microwave up to THz frequencies, due to the electro-mechanical and low loss nature of the tuning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。