Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models.

利用真实人体模型预测周围神经系统的磁刺激阈值

阅读:3
作者:Davids Mathias, Guérin Bastien, Malzacher Matthias, Schad Lothar R, Wald Lawrence L
Rapid switching of applied magnetic fields in the kilohertz frequency range in the human body induces electric fields powerful enough to cause Peripheral Nerve Stimulation (PNS). PNS has become one of the main constraints on the use of high gradient fields for fast imaging with the latest MRI gradient technology. In recent MRI gradients, the applied fields are powerful enough that PNS limits their application in fast imaging sequences like echo-planar imaging. Application of Magnetic Particle Imaging (MPI) to humans is similarly PNS constrained. Despite its role as a major constraint, PNS considerations are only indirectly incorporated in the coil design process, mainly through using the size of the linear region as a proxy for PNS thresholds or by conducting human experiments after constructing coil prototypes. We present for the first time, a framework to simulate PNS thresholds for realistic coil geometries to directly address PNS in the design process. Our PNS model consists of an accurate body model for electromagnetic field simulations, an atlas of peripheral nerves, and a neurodynamic model to predict the nerve responses to imposed electric fields. With this model, we were able to reproduce measured PNS thresholds of two leg/arm solenoid coils with good agreement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。