Injectability of Thermosensitive, Low-Concentrated Chitosan Colloids as Flow Phenomenon through the Capillary under High Shear Rate Conditions.

热敏低浓度壳聚糖胶体在高剪切速率条件下通过毛细管的流动现象的可注射性

阅读:4
作者:Rył Anna, Owczarz Piotr
Low-concentrated colloidal chitosan systems undergoing a thermally induced sol-gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to analyze the flow phenomenon of thermosensitive chitosan systems with the addition of disodium β-glycerophosphate through hypodermic needles. Injectability tests were performed using a texture analyzer and hypodermic needles in the sizes 14G-25G. The rheological properties were determined by the flow curve, three-interval thixotropy test (3ITT), and Cox-Merz rule. It was found that reducing the needle diameter and increasing its length and the crosshead speed increased the injection forces. It was claimed that under the considered flow conditions, there was no need to take into account the viscoelastic properties of the medium, and the model used to predict the injection force, based solely on the shear-thinning nature of the experimental material, showed very good agreement with the experimental data in the shear rate range of 200-55,000 s(-1). It was observed that the increase in the shear rate value led to macroscopic structural changes of the chitosan sol caused by the disentangling and ordering of the polysaccharide chains along the shear field.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。