BACKGROUND: Glaucocalyxin B (Gla B) is a type of sesquiterpenoids. At present, there are rare studies on the pharmacological effects and targets of sesquiterpenoids, while multiple sesquiterpenoids have good anti-inflammatory properties. Therefore, in this study, we aimed to investigate the mechanism of Gla B on macrophages and rheumatoid arthritis. METHODS: LPS/IFN-γ was used to induce M1 polarization of synovial macrophage (SMG) in vitro, followed by Gla B pretreatment (5 μM and 15 μM). Afterwards, flow cytometry was performed to detect the proportion of M1 cells (F4/80+CD86+), enzyme-linked immunosorbent assay (ELISA) was used to determine the expression levels of M1 cell markers (TNF-α, IL-1β, IL-6, iNOS and IL-12) as well as M2 cell markers (IL-10 and TGF- β1), immunofluorescence (IF) staining was utilized to measure the expression of CD86, the level of ROS was assessed by probe and Western blot was conducted to detect the expression of P65 and p-P65. M1 polarization was detected in SMG cells with P65 silencing after 15 μM Gla B intervention. The culture medium from M1 cell was used to culture cartilage cells in vitro, followed by detection of cartilage cell injury. In animal models, collagen antibodies and LPS were combined to induce RA mouse model. Afterwards, H and E staining was performed to detect pathological changes in mouse joint synovium, safranin O-fast green staining was used to determine cartilage injury, and immunohistochemistry was utilized to detect CD86 and P65 expression. Small molecule-protein docking and co-immunoprecipitation (Co-IP) were used to verify the targeted binding relationship between Gal B and P65. RESULTS: LPS and IFN-γ could induce M1 polarization in SMG. Gal B could inhibit M1 polarization, decrease the levels of TNF-α, IL-1β, IL-6, iNOS and IL-12, inhibit the expression of P65 and p-P65 while did not affect the expression of IL-10 or TGF-β1. Gal B had no significant effect in SMG cells with P65 silencing. The small molecule-protein docking and Co-IP both showed that Gal B had a targeted binding relationship with P65, and Gal B could inhibit joint injury and inflammation in mice. CONCLUSION: Gal B could target the P65 protein. Moreover, Gal B could inhibit the inflammatory injury of articular cartilage in RA by regulating M1 polarization of SMG through inhibiting the NF-κB signaling.
Glaucocalyxin B inhibits cartilage inflammatory injury in rheumatoid arthritis by regulating M1 polarization of synovial macrophages through NF-κB pathway.
青光眼素 B 通过 NF-κB 通路调节滑膜巨噬细胞的 M1 极化,从而抑制类风湿性关节炎中的软骨炎症损伤
阅读:4
作者:Han Chenyang, Yang Yi, Sheng Yongjia, Wang Jin, Zhou Xiaohong, Li Wenyan, Guo Li, Zhang Caiqun, Ye Qiao
| 期刊: | Aging-Us | 影响因子: | 3.900 |
| 时间: | 2021 | 起止号: | 2021 Sep 27; 13(18):22544-22555 |
| doi: | 10.18632/aging.203567 | 研究方向: | 细胞生物学 |
| 疾病类型: | 关节炎 | 信号通路: | NF-κB |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
