PICK1 links KIBRA and AMPA receptor subunit GluA2 in coiled-coil-driven supramolecular complexes.

PICK1 将 KIBRA 和 AMPA 受体亚基 GluA2 连接成卷曲螺旋驱动的超分子复合物

阅读:5
作者:Shao Xin, Volk Lenora
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that protein interacting with C kinase 1 (PICK1), a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. In contrast, KIBRA can form a complex with GluA1 independent of PICK1. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the PICK1 BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。