Pharmacological CLK inhibition disrupts SR protein function and RNA splicing blocking cell growth and migration in TNBC.

药理学上的 CLK 抑制会破坏 SR 蛋白功能和 RNA 剪接,从而阻断 TNBC 中的细胞生长和迁移

阅读:6
作者:Liu Nasi, van der Velde Jurjun J S, Ramdjielal Sherien, Koedoot Esmee, van Overbeek Nila K, Batenburg Daisy, Vertegaal Alfred C O, van de Water Bob, Le Dévédec Sylvia E
BACKGROUND: Dysregulation of alternative splicing plays a pivotal role in tumorigenesis and metastasis in triple-negative breast cancer (TNBC). Serine/arginine-rich (SR) proteins, essential components of the spliceosome, undergo phosphorylation by Cdc2-like kinase (CLK). Here we explored the impact of pharmacological inhibition of CLK using a novel inhibitor, T-025, on the spliceosome complex and transcriptional responses in relation to cell proliferation and migration in TNBC. METHODS: We evaluated the anti-proliferative and anti-migratory efficacy of T-025 in a spectrum of TNBC cell lines. Fluorescent reporter cell lines and flowcytometry were used to determine the effect of T-025 on cell cycle. Deep RNA sequencing was performed to unravel the differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) upon T-025 treatment. Pulldown/MS was used to uncover the impact of T-025 on SRSF7 interactome. Live-cell imaging and photobleaching experiments were conducted to determine the subnuclear localization of SRSF7-GFP and its dynamic mobility. RESULTS: T-025 exhibited a potent anti-proliferative effect in a spectrum of TNBC cell lines, particularly in highly proliferative cell lines. Treatment with T-025 induced cell cycle arrest in the G1-S phase, resulting in an increased proportion of aneuploidy cells and cells with 4 N DNA. T-025 significantly inhibited cell migration in highly migratory TNBC cell lines. Deep RNA sequencing uncovered numerous DEGs and ASGs upon T-025 treatment, which were significantly enriched in pathways related to cell division, RNA splicing and cell migration. Pulldown/MS showed that SRSF7 interacted more with nuclear-speckle-residing proteins, while less with RNA helicases and polymerases upon T-025 treatment. Enhanced interactions between SRSF7 and other phosphorylated SR proteins localized at nuclear speckles were also observed. Live-cell imaging indicated that T-025 treatment induced the accumulation of SRSF7-GFP at nuclear speckles and nuclear speckles' enlargement, restricting its protein dynamic mobility. CONCLUSIONS: CLK inhibition using T-025 leads to the accumulation of splicing factors at nuclear speckles and stalls their release to splicing sites, resulting in the RNA splicing reprogramming of a large number of genes involved in cell division, migration and RNA splicing. Our findings provide evidence that T-025 could be a promising therapeutic drug for TNBC patients.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。