Transcription factors (TFs) bind to specific genomic sites to regulate gene expression(1,2). These interactions almost universally require DNA deformation and the accumulation of local mechanical strain within the double helix. As a result, TF-DNA recognition is determined not only by the linear base sequence but also by the spatial alignment of bases and phosphates, as well as their ability to adopt and retain structural deformations(3). However, the sequence-centric focus of existing studies makes it challenging to directly probe DNA structural determinants and to decouple their impact from alterations in base sequences, limiting our ability to unravel the key factors influencing binding beyond the sequence identity and leaving significant gaps in our understanding of the principles governing TF-DNA recognition. Here, we introduce a high-throughput strategy to perturb TF binding sites without altering their base sequence, enabling systematic investigation of the structural features of DNA that govern TF binding. Our method, PIC-NIC, introduces single-strand breaks (SSBs) at every position within the binding site, selectively disrupting backbone continuity while preserving nucleotide identity, with the resulting effects on TF binding measured quantitatively. Applied to 15 human TFs spanning eight structural classes, and supported by seven high-resolution TF-DNA crystal structures and molecular dynamics simulations, PIC-NIC uncovers discrete backbone positions serving as structural anchor points where nicks can abolish binding, rewire sequence preferences, or even enhance affinity. By decoupling structural and chemical contributions, we demonstrate that DNA mechanics-encoded in backbone geometry and continuity-can independently shape binding specificity beyond the linear code of base identity. These findings shift the paradigm of TF-DNA recognition, establishing the backbone not as a passive scaffold, but as a functional determinant capable of directing regulatory mechanisms through its physical architecture.
Systematic DNA nicking reveals the structural logic of protein recognition.
系统性的DNA切口揭示了蛋白质识别的结构逻辑
阅读:8
作者:Yao Yumi Minyi, O'Hagan Michael P, Onoon Karn, Givon Lihee, Hamer-Rogotner Shelly, Salinas Raul, Kessler Naama, Dym Orly, Pipatpolkai Tanadet, Schumacher Maria A, Afek Ariel
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 4 |
| doi: | 10.1101/2025.06.30.662289 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
