Biomolecular condensates mediate diverse and essential cellular functions by compartmentalizing biochemical pathways. Many condensates have internal subdomains with distinct compositional identities. A major challenge lies in dissecting the multicomponent logic that relates biomolecular features to emergent condensate organization. Nuclear paraspeckles are paradigmatic examples of multi-domain condensates, comprising core and shell layers with distinct compositions that are scaffolded by the lncRNA NEAT1, which spans both layers. A prevailing model of paraspeckle assembly proposes that core proteins bind directly and specifically to core-associated NEAT1 domains. Combining informatics and biochemistry, we unexpectedly find that the essential core proteins FUS and NONO bind and condense preferentially with shell-associated NEAT1 domains. The shell protein TDP-43 exhibits similar NEAT1 domain preferences on its own but forms surfactant-like shell layers around core protein-driven condensates when both are present. Together, experiments and physics-based simulations suggest that competitive RNA binding and immiscibility between core and shell proteins orders paraspeckle layers. More generally, we propose that sub-condensate organization can spontaneously arise from a balance of collaborative and competitive protein binding to the same domains of a lncRNA.
Immiscible proteins compete for RNA binding to order condensate layers.
不相容的蛋白质竞争RNA结合位点,从而形成有序的凝聚层
阅读:5
作者:Snead Wilton T, Skillicorn Mary K, Shrinivas Krishna, Gladfelter Amy S
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 19 |
| doi: | 10.1101/2025.03.18.644007 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
