The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs using ChIP-Seq. We use these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence. BoltzNet mirrors a quantitative biophysical model and provides directly interpretable predictions genome-wide at nucleotide resolution. We use BoltzNet to quantitatively design novel binding sites, which we validate with biophysical experiments on purified protein. We generate models for 124 TFs that provide insight into global features of TF binding, including clustering of sites, the role of accessory bases, the relevance of weak sites, and the background affinity of the genome. Our paper provides new paradigms for studying TF-DNA binding and for the development of biophysically motivated neural networks.
Predictive biophysical neural network modeling of a compendium of in vivo transcription factor DNA binding profiles for Escherichia coli.
大肠杆菌体内转录因子DNA结合谱汇编的预测性生物物理神经网络建模
阅读:5
作者:Lally Patrick, Gómez-Romero Laura, TierrafrÃa VÃctor H, Aquino Patricia, Rioualen Claire, Zhang Xiaoman, Kim Sunyoung, Baniulyte Gabriele, Plitnick Jonathan, Smith Carol, Babu Mohan, Collado-Vides Julio, Wade Joseph T, Galagan James E
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 7; 16(1):4255 |
| doi: | 10.1038/s41467-025-58862-8 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
