Generation of Site-Specifically Labeled Affinity Reagents via Use of a Self-Labeling Single Domain Antibody.

利用自标记单域抗体生成位点特异性标记的亲和试剂

阅读:3
作者:Fayn Stanley, Roy Swarnali, Cabalteja Chino C, Lee Woonghee, Makala Hima, Baidoo Kwamena, Nambiar Divya, Sheehan-Klenk Julia, Chung Joon-Yong, Buffington Jesse, Ho Mitchell, Escorcia Freddy E, Cheloha Ross W
Several chemical and enzymatic methods have been used to link antibodies to moieties that facilitate visualization of cognate targets. Emerging evidence suggests that the extent of labeling, dictated by the type of chemistry used, has a substantial impact on performance, especially in the context of antibodies used for the visualization of tumors in vivo. These effects are particularly pronounced in studies using small antibody fragments, such as single-domain antibodies, or nanobodies. Here, we leverage a new variety of conjugation chemistry, based on a nanobody that forms a crosslink with a specialized high-affinity epitope analogue, to label target-specific nanobody constructs with functionalities of choice, including fluorophores, chelators, and click chemistry handles. Using heterodimeric nanobody conjugates, comprised of an antigen recognition module and a self-labeling module, enables us to attach the desired functional group at a location distal to the site of antigen recognition. Constructs generated using this approach bound to antigens expressed on xenograft murine models of liver cancer and allowed for non-invasive diagnostic imaging. The modularity of our approach using a self-labeling nanobody offers a novel method for site-specific functionalization of biomolecules and can be extended to other applications for which covalent labeling is required.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。