BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, and increasing evidence suggests that exposure to environmental pollutants is associated with the increased incidence of MASLD. The farnesoid X receptor (FXR) plays an important role in the development of MASLD by regulating bile acids (BAs) and lipid metabolism. However, whether FXR-active pollutants are the environmental drivers of MASLD remains unclear. OBJECTIVES: This study aimed to determine whether FXR-active pollutants exist in the environment and evaluate their ability to trigger MASLD development in mice. METHODS: An FXR protein affinity pull-down assay and nontargeted mass spectrometry (MS) analysis were used to identify environmental FXR ligands in sewage sludge. A homogeneous time-resolved fluorescence coactivator recruitment assay and cell-based dual-luciferase reporter assay were used to determine the FXR activities of the identified pollutants. Targeted analysis of BAs, MS imaging, lipidomic analysis, 16S rRNA sequencing, and quantitative polymerase chain reaction were conducted to assess the ability of FXR-active pollutants to induce metabolic disorders of BAs and lipids and to contribute to MASLD development in C57BL/6N mice. RESULTS: We identified 19 compounds in the sewage sludge that had FXR-antagonistic activity, and triphenyl phosphate (TPHP) was the FXR antagonist with the highest efficacy. Mice exposed to either 10 or 50 mg/kg TPHP for 30 d had higher levels of conjugated primary BAs in enterohepatic circulation, and the BA pool showed FXR antagonistic activities. The exposed mice also had greater lipogenesis (more Oil Red O staining and high triglyceride levels) in liver. CONCLUSIONS: Nineteen FXR-antagonistic pollutants were identified in sewage sludge. FXR inhibition by the strongest antagonist TPHP may have a role in promoting MASLD development in mice by inducing a positive feedback loop between the FXR and BAs. https://doi.org/10.1289/EHP15435.
Evaluation of FXR Activity in Pollutants Identified in Sewage Sludge and Subsequent in Vitro and in Vivo Characterization of Metabolic Effects of Triphenyl Phosphate.
对污水污泥中鉴定的污染物进行 FXR 活性评价,并对磷酸三苯酯的代谢效应进行体外和体内表征
阅读:7
作者:Yang Yi, Jiao Ling, Huang Yixuan, Shang Hailin, Li Enrui, Chang Hong, Cui Hongyang, Wan Yi
| 期刊: | Environmental Health Perspectives | 影响因子: | 9.800 |
| 时间: | 2025 | 起止号: | 2025 Apr;133(3-4):47005 |
| doi: | 10.1289/EHP15435 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
