Antibody-based therapeutics have demonstrated remarkable therapeutic benefit, but their susceptibility to biotransformation and degradation in the body can affect their safety, efficacy, and pharmacokinetic/pharmacodynamic (PK/PD) profiles. In vitro stability assessments play a pivotal role in proactively identifying potential liabilities of antibody therapeutics prior to animal studies. Liquid chromatography-mass spectrometry (LC-MS)-based in vitro stability assays has been developed and adopted in the biopharmaceutical industry for the characterization of antibody-based therapeutics. However, these methodologies often overlook operational error and random variation during sample preparation and analysis, leading to inaccurate stability estimation. To address this limitation, we have developed an LC-MS-based in vitro serum stability assessment that incorporates two internal standards (ISs), National Institute of Standards and Technology monoclonal antibody (NISTmAb) and its crystallizable fragment (Fc), to improve assay performance. Our method involves three steps: incubation of antibody therapeutics along with an IS in biological matrices, affinity purification, and LC-MS analysis. The stability of 21 monoclonal or bispecific antibodies was assessed in serums of preclinical species using this method. Our results showed improved accuracy and precision of recovery calculations with the incorporation of ISs, enabling a more confident stability assessment even in the absence of biotransformation or aggregation. In vitro stability correlated with in vivo exposure, suggesting that this in vitro assay could serve as a routine screening tool to select and advance stable antibody therapeutic candidates for subsequent in vivo studies.
A novel in vitro serum stability assay for antibody therapeutics incorporating internal standards.
一种采用内标法的抗体药物体外血清稳定性检测新方法
阅读:7
作者:Li Yihan, Villafuerte-Vega Rosendo, Shenoy Vikram M, Jackson Heidi M, Wang Yuting, Parrish Karen E, Jenkins Gary J, Sarvaiya Hetal
| 期刊: | MAbs | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Dec;17(1):2479529 |
| doi: | 10.1080/19420862.2025.2479529 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
