Training Generalized Segmentation Networks with Real and Synthetic Cryo-ET data.

利用真实和合成的冷冻电镜数据训练通用分割网络

阅读:10
作者:Purnell Carson, Heebner Jessica, Nguyen Linh, Swulius Michael T, Hylton Ryan, Kabonick Seth, Grillo Michael, Grillo Stephanie, Grigoryev Sergei, Heberle Frederick A, Waxham M Neal, Swulius Matthew T
Deep learning excels at segmenting objects within noisy cryo-electron tomograms, but the approach is typically bottlenecked by access to ground truth training data. To address this issue we have developed CryoTomoSim (CTS), an open-source software package that builds coarse-grained models of macromolecular complexes embedded in vitreous ice and then simulates transmitted electron tilt series for tomographic reconstruction. Using CTS outputs, we demonstrate the effects of key microscope parameters (dose, defocus, and pixel size) on deep learning-based segmentation, and show that including both molecular crowding and diversity within synthetic datasets is key to training cellular segmentation networks from purely synthetic inputs. While very effective as initial models, the accuracy of these networks is currently limited, and real cellular data is necessary to train the most accurate and generalizable U-Nets. Using a co-training approach, we first segment over 100 tomograms from neuronal growth cones to quantify their cytoskeletal distributions and then we build a generalized cellular cryo-ET segmentation network called NeuralSeg that can segment a subset of cellular features in tomograms from all domains of life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。