The assembly/disassembly of biological macromolecules plays an important role in their biological functionalities. Although the dynamics of tubulin polymers and their super-assembly into microtubule structures is critical for many cellular processes, details of their cyclical polymerization/depolymerization are not fully understood. Here, we use a specially designed light scattering technique to continuously examine the effects of temperature cycling on the process of microtubule assembly/disassembly. We observe a thermal hysteresis loop during tubulin assembly/disassembly, consistently with earlier reports on the coexistence of tubulin and microtubules as a phase transition. In a cyclical process, the structural hysteresis has a kinetic component that depends on the rate of temperature change but also an intrinsic thermodynamic component that depends on the protein topology, possibly related to irreversible processes. Analyzing the evolution of such thermal hysteresis loops over successive cycles, we found that the assembly/disassembly ceases after some time, which is indicative of protein aging leading to its inability to self-assemble after a finite number of temperature cycles. The emergence of assembly-incompetent tubulin could have major consequences for human pathologies related to microtubules, including aging, neurodegenerative diseases and cancer.
Thermal hysteresis in microtubule assembly/disassembly dynamics: The aging-induced degradation of tubulin dimers.
微管组装/解聚动力学中的热滞后:老化引起的微管蛋白二聚体降解
阅读:8
作者:Wu R, Guzman-Sepulveda J R, Kalra A P, Tuszynski J A, Dogariu A
| 期刊: | Biochemistry and Biophysics Reports | 影响因子: | 2.200 |
| 时间: | 2022 | 起止号: | 2022 Jan 8; 29:101199 |
| doi: | 10.1016/j.bbrep.2021.101199 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
