The morphology and morphodynamics of cells as important biomarkers of the cellular state are widely appreciated in both fundamental research and clinical applications. Quantification of cell morphology often requires a large number of geometric measures that form a high-dimensional feature vector. This mathematical representation creates barriers to communicating, interpreting, and visualizing data. Here, we develop a deep learning-based algorithm to project 13-dimensional (13D) morphological feature vectors into 2-dimensional (2D) morphological latent space (MLS). We show that the projection has less than 5% information loss and separates the different migration phenotypes of metastatic breast cancer cells. Using the projection, we demonstrate the phenotype-dependent motility of breast cancer cells in the 3D extracellular matrix, and the continuous cell state change upon drug treatment. We also find that dynamics in the 2D MLS quantitatively agrees with the morphodynamics of cells in the 13D feature space, preserving the diffusive power and the Lyapunov exponent of cell shape fluctuations even though the dimensional reduction projection is highly nonlinear. Our results suggest that MLS is a powerful tool to represent and understand the cell morphology and morphodynamics.
Representation of high-dimensional cell morphology and morphodynamics in 2D latent space.
在二维潜在空间中表示高维细胞形态和形态动力学
阅读:5
作者:Cunningham Christian, Sun Bo
| 期刊: | Physical Biology | 影响因子: | 1.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 24; 22(3):10 |
| doi: | 10.1088/1478-3975/adcd37 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
