Granular biomaterials have found widespread applications in tissue engineering, in part because of their inherent porosity, tunable properties, injectability, and 3D printability. However, the assembly of granular hydrogels typically relies on spherical microparticles and more complex particle geometries have been limited in scope, often requiring templating of individual microgels by microfluidics or in-mold polymerization. Here, we use dithiolane-functionalized synthetic macromolecules to fabricate photopolymerized microgels via batch emulsion, and then harness the dynamic disulfide crosslinks to rearrange the network. Through unconfined compression between parallel plates in the presence of photoinitiated radicals, we transform the isotropic microgels are transformed into disks. Characterizing this process, we find that the areas of the microgel surface in contact with the compressive plates are flattened while the curvature of the uncompressed microgel boundaries increases. When cultured with C2C12 myoblasts, cells localize to regions of higher curvature on the disk-shaped microgel surfaces. This altered localization affects cell-driven construction of large supraparticle scaffold assemblies, with spherical particles assembling without specific junction structure while disk microgels assemble preferentially on their curved surfaces. These results represent a unique spatiotemporal process for rapid reprocessing of microgels into anisotropic shapes, providing new opportunities to study shape-driven mechanobiological cues during and after granular hydrogel assembly.
Facile Physicochemical Reprogramming of PEG-Dithiolane Microgels.
PEG-二硫杂环戊烷微凝胶的简易物理化学重编程
阅读:4
作者:Nelson Benjamin R, Kirkpatrick Bruce E, Skillin Nathaniel P, Di Caprio Nikolas, Lee Joshua S, Hibbard Lea Pearl, Hach Grace K, Khang Alex, White Timothy J, Burdick Jason A, Bowman Christopher N, Anseth Kristi S
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2024 | 起止号: | 2024 Oct;13(25):e2302925 |
| doi: | 10.1002/adhm.202302925 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
