Antidiabetic activity in vitro and in vivo of BDB, a selective inhibitor of protein tyrosine phosphatase 1B, from Rhodomela confervoides

源自 Rhodomela confervoides 的蛋白酪氨酸磷酸酶 1B 选择性抑制剂 BDB 的体外和体内抗糖尿病活性

阅读:10
作者:Jiao Luo, Meiling Zheng, Bo Jiang, Chao Li, Shuju Guo, Lijun Wang, Xiangqian Li, Rilei Yu, Dayong Shi

Background and purpose

Protein tyrosine phosphatase (PTP) 1B (PTP1B) plays a critical role in the regulation of obesity, Type 2 diabetes mellitus and other metabolic diseases. However, drug candidates exhibiting PTP1B selectivity and oral bioavailability are currently lacking. Here, the enzyme inhibitory characteristics and pharmacological benefits of 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (BDB) were investigated in vitro and in vivo. Experimental approach: Surface plasmon resonance (SPR) assay was performed to validate the direct binding of BDB to PTP1B, and Lineweaver-Burk analysis of the enzyme kinetics was used to characterise the inhibition by BDB. Both in vitro enzyme-inhibition assays and SPR experiments were also conducted to study the selectivity exhibited by BDB towards four other PTP-family proteins: TC-PTP, SHP-1, SHP-2, and LAR. C2C12 myotubes were used to evaluate cellular permeability to BDB. Effects of BDB on insulin signalling, hypoglycaemia and hypolipidaemia were investigated in diabetic BKS db mice, after oral gavage. The beneficial effects of BDB on pancreatic islets were examined based on insulin and/or glucagon staining. Key

Purpose

Protein tyrosine phosphatase (PTP) 1B (PTP1B) plays a critical role in the regulation of obesity, Type 2 diabetes mellitus and other metabolic diseases. However, drug candidates exhibiting PTP1B selectivity and oral bioavailability are currently lacking. Here, the enzyme inhibitory characteristics and pharmacological benefits of 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (BDB) were investigated in vitro and in vivo. Experimental approach: Surface plasmon resonance (SPR) assay was performed to validate the direct binding of BDB to PTP1B, and Lineweaver-Burk analysis of the enzyme kinetics was used to characterise the inhibition by BDB. Both in vitro enzyme-inhibition assays and SPR experiments were also conducted to study the selectivity exhibited by BDB towards four other PTP-family proteins: TC-PTP, SHP-1, SHP-2, and LAR. C2C12 myotubes were used to evaluate cellular permeability to BDB. Effects of BDB on insulin signalling, hypoglycaemia and hypolipidaemia were investigated in diabetic BKS db mice, after oral gavage. The beneficial effects of BDB on pancreatic islets were examined based on insulin and/or glucagon staining. Key

Results

BDB acted as a competitive inhibitor of PTP1B and demonstrated high selectivity for PTP1B among the tested PTP-family proteins. Moreover, BDB was cell-permeable and enhanced insulin signalling in C2C12 myotubes. Lastly, oral administration of BDB produced effective antidiabetic effects in spontaneously diabetic mice and markedly improved islet architecture, which was coupled with an increase in the ratio of β-cells to α-cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。