PURPOSE: Cisplatin (cis-diamminedichloroplatinum II, CDDP), a widely used chemotherapeutic agent, is clinically limited by nephrotoxicity. Rhein, an anthraquinone from Radix Rhein Et Rhizome, shows nephroprotective potential. This study investigated Rhein's protective effects and mechanisms in CDDP-induced acute kidney injury (AKI). METHODS: Network pharmacology identified active components and target genes of Radix Rhein Et Rhizome. Bioinformatics analysis screened differentially expressed genes and conducted functional enrichment (GO/HALLMARK). Molecular docking and molecular dynamic (MD) simulations confirmed Rhein's binding to target proteins. CDDP-induced AKI mouse models and human proximal tubular epithelial cells (HK2) injury models were established to reveal Rhein's nephroprotective mechanisms. Lewis lung carcinoma (LLC) tumor-bearing mice and human A549 lung cancer cells further validated Rhein's compatibility with CDDP antitumor efficacy. RESULTS: Network pharmacology revealed 12 bioactive components and 420 potential targets of Radix Rhein Et Rhizome, with Rhein as the core component interacting with 50 cross-validated targets. Protein-protein interaction (PPI) network analysis prioritized 16 hub genes functionally enriched in oxidative stress (GO) and inflammatory/apoptotic pathways (HALLMARK). Molecular docking and MD simulations demonstrated Rhein's robust binding stability with NOX4, COX2, and PGFS, indicating multi-target modulation. In vivo, Rhein attenuated CDDP-induced AKI by reducing plasma creatinine, renal KIM-1/NGAL expression, and suppressing tubular apoptosis and inflammation. In vitro, Rhein mitigated CDDP-triggered HK2 cell injury through reducing ROS levels and inhibiting the NOX4-NFκB-COX2/PGFS axis. Notably, Rhein preserved CDDP's tumor-suppressive effects in both LLC-bearing mice and A549 cells. CONCLUSION: Rhein protects against CDDP-induced AKI by inhibiting oxidative stress and inflammation through targeting the NOX4-NFκB-COX2/PGFS pathway, without compromising CDDP's antitumor activity. These findings highlight Rhein as a promising adjunctive therapy for CDDP-associated nephrotoxicity.
Rhein Alleviates Cisplatin-Induced Acute Kidney Injury via Downregulation of NOX4-COX2/PGFS Signaling Pathway.
大黄素通过下调 NOX4-COX2/PGFS 信号通路减轻顺铂引起的急性肾损伤
阅读:5
作者:Yuan Xi, Long Luosha, Wang Minghui, Chen Wenhao, Liang Baien, Xu Long, Wang Weidong, Li Chunling
| 期刊: | Drug Design Development and Therapy | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 May 31; 19:4641-4664 |
| doi: | 10.2147/DDDT.S515409 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
