Doxorubicin (DOX) is a potent chemotherapeutic agent used to treat many types of cancer. Its use is limited because of the reported accompanied cardiotoxicity, which is driven by oxidative stress and inflammation. Herin, we explored the cardioprotective impact of reduced glutathione (GSH) against DOX-induced cardiac damage in a mice model and highlighted the dynamic interplay between pro-inflammatory and antioxidant mechanisms, with tissue damage markers and oxidative byproducts. Mice were divided into four groups and administered DOX, GSH, or a combination, and the outcomes were compared to untreated controls. DOX administration caused significant mortality, weight loss, elevated serum markers of cardiac injury (CK-MB and LDH), oxidative stress (MDA and iron), pro-inflammatory cytokines (IL-6, IL-17, and IL-23), and upregulated pro-inflammatory gene expression of STAT-3 and NFκB as well as downregulated gene expression of NRF-2 and HO-1. Histological analysis showed myocardial fibrosis, vacuolization, and apoptosis, as confirmed by a TUNEL assay. Meanwhile, treatment with GSH improved survival rate, attenuated weight loss, and restored cardiac function markers. Furthermore, GSH suppressed oxidative stress and inflammation, modulated gene expression, and declined histopathological damage. These findings demonstrated the multifaceted cardioprotection of GSH through the restoration of redox homeostasis and modulation of the pro- and anti-inflammatory responses. GSH supplementation emerges as a promising adjunct therapy to mitigate DOX-induced cardiotoxicity, offering a strategy to improve cardiac health in cancer patients undergoing doxorubicin chemotherapy.
Multifaceted Cardioprotective Potential of Reduced Glutathione Against Doxorubicin-Induced Cardiotoxicity via Modulating Inflammation-Oxidative Stress Axis.
还原型谷胱甘肽通过调节炎症-氧化应激轴发挥对抗阿霉素诱导的心脏毒性的多方面心脏保护作用
阅读:11
作者:Negm Amr, Mersal Ezat A, Dawood Amal F, Abd El-Azim Amira O, Hasan Omar, Alaqidi Rayan, Alotaibi Ahmed, Alshahrani Mohammed, Alheraiz Abdullah, Shawky Tamer M
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 30; 26(7):3201 |
| doi: | 10.3390/ijms26073201 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
