Membrane mediated motor kinetics in microtubule gliding assays.

微管滑动实验中膜介导的运动动力学

阅读:12
作者:Lopes Joseph, Quint David A, Chapman Dail E, Xu Melissa, Gopinathan Ajay, Hirst Linda S
Motor-based transport mechanisms are critical for a wide range of eukaryotic cell functions, including the transport of vesicle cargos over long distances. Our understanding of the factors that control and regulate motors when bound to a lipid substrate is however incomplete. We used microtubule gliding assays on a lipid bilayer substrate to investigate the role of membrane diffusion in kinesin-1 on/off binding kinetics and thereby transport velocity. Fluorescence imaging experiments demonstrate motor clustering on single microtubules due to membrane diffusion in the absence of ATP, followed by rapid ATP-induced dissociation during gliding. Our experimental data combined with analytical modeling show that the on/off binding kinetics of the motors are impacted by diffusion and, as a consequence, both the effective binding and unbinding rates for motors are much lower than the expected bare rates. Our results suggest that motor diffusion in the membrane can play a significant role in transport by impacting motor kinetics and can therefore function as a regulator of intracellular transport dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。