Astragaloside IV accelerates hematopoietic reconstruction by improving the AMPK/PGC1α-mediated mitochondrial function in hematopoietic stem cells.

黄芪甲苷 IV 通过改善造血干细胞中 AMPK/PGC1α 介导的线粒体功能来加速造血重建

阅读:6
作者:Zhang Ling, Xu Wanqi, Zeng Yueying, Wang Long, Luo Jiesi, Zhou Xiaogang, Mei Qibing, Qin Dalian, Wu Anguo, Wu Jianming, Huang Feihong
BACKGROUND: Radiotherapy can damage hematopoietic stem cells (HSC) in bone marrow, leading to impaired hematopoietic function. Current treatments mainly target differentiated hematopoietic progenitor cells, which may accelerate their depletion. Astragaloside IV (AS-IV), derived from Astragalus membranaceus, shows potential in hematopoiesis, but its direct effects on HSC remain unclear. METHODS: The study employed both in vitro and in vivo approaches. In vitro experiments utilized K562 cells and mouse bone marrow nucleated cells (BMNCs) to evaluate AS-IV's effects on cell proliferation and mitochondrial function. In vivo studies involved a 4.0 Gy total body irradiation mouse model treated with different doses of AS-IV (50 mg/kg and 100 mg/kg). The mechanism of action was investigated through Western blot, flow cytometry, and metabolomics analyses. The AMPK/PGC1α pathway regulation was verified using AMPK inhibitors and mutant plasmid, with molecular docking confirming AS-IV's direct binding to AMPK. RESULTS: In vitro studies demonstrated that AS-IV significantly promoted the proliferation of K562 cells and BMNC while enhancing their mitochondrial membrane potential, mitochondrial mass, and ATP production. In the irradiated mouse model, AS-IV treatment led to significant improvements in peripheral blood cell counts, including white blood cells, red blood cells, and hemoglobin levels. Further investigation revealed that AS-IV increased the proportion of HSC in both bone marrow and spleen while improving their mitochondrial function. Transcriptomic sequencing and Western blot analysis identified the AMPK/PGC1α signaling pathway as the key mechanism underlying AS-IV-mediated mitochondrial enhancement. These findings were validated through pharmacological inhibition of AMPK and AMPK(K45R) mutation experiments. CONCLUSION: AS-IV accelerates hematopoietic reconstruction following radiation injury via activation of the AMPK/PGC1α signaling pathway, which enhances HSC mitochondrial function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。