Vincamine induces cytoprotective autophagy via regulation of ampk/mtor signaling pathway in gentamicin-induced hepatotoxicity and nephrotoxicity in rats.

长春胺通过调节ampk/mtor信号通路诱导细胞保护性自噬,从而减轻庆大霉素诱导的大鼠肝毒性和肾毒性

阅读:5
作者:Abouelhamd Alaa, Shehata Nourhan Elpry Mahmoud, Abdel-Hafez Sara Mohamed Naguib, Abu-Baih Dalia H
Gentamicin (GET), a widely utilized aminoglycoside antibiotic for severe bacterial infections, is associated with significant hepatorenal toxicity. These adverse effects are frequently exacerbated by GET-induced oxidative stress and inflammation. This study aimed to evaluate the potential protective efficacy of vincamine (VIN) against GET-induced hepatic and renal damage. 4 groups of adult male rats were assigned: normal control (received CMC), GET (100 mg/kg, i.p.), VIN (40 mg/kg, p.o.), and GET/VIN (received both VIN and GET) for 7 days. Liver and kidney function tests were performed. Serum total antioxidant capacity (TAC) and tissue malondialdehyde (MDA) were quantified. To assess apoptosis, Bax and Bcl-2 mRNA levels were quantified using real-time polymerase chain reaction (RT-PCR), while cleaved caspase-3 protein levels were measured using ELISA. Histopathological alterations were also examined. The implication of autophagy was assessed by detecting AMPK, beclin-1, LC3 and mTOR proteins. Our results indicated that VIN significantly attenuated GET-induced hepatotoxicity and nephrotoxicity by mitigating oxidative stress and apoptosis. Mechanistically, VIN modulated apoptotic pathways by upregulating the anti-apoptotic Bcl-2 gene and downregulating the pro-apoptotic Bax gene. Notably, VIN potently enhanced autophagy through modulation of the AMPK/mTOR signaling pathway, evidenced by the upregulation of beclin1 and LC3 levels. Histopathological analysis further corroborated these findings, demonstrating that VIN markedly reduced the tissue damage associated with GET administration. VIN demonstrates potential as a cytoprotective agent against GET-induced hepatorenal toxicity. The protective effect of VIN may be attributed to its capacity to modulate the Bax/Bcl-2/Caspase-3-dependent apoptotic pathway and the AMPK/mTOR-mediated autophagy pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。