GDF11 does not improve the palmitate induced insulin resistance in C2C12

GDF11 不能改善 C2C12 中棕榈酸诱导的胰岛素抵抗

阅读:5
作者:Y-Y Jing, D Li, F Wu, L-L Gong, R Li

Conclusions

We firstly confirmed that the expression of GDF11 decreased both in the skeletal muscle of obese mice and palmitate-treated myotubes, but supplementation GDF11 does not ameliorate the palmitate-induced insulin resistance in C2C12 myotubes.

Methods

High fat diet induced obese mice with insulin resistance were established in vivo. Palmitate-induced insulin resistance in C2C12 myotubes was established in vitro. The mRNA expression of GDF11, GLUT4, IRS-1 (insulin receptor substrate-1) and PGC-1α (peroxisome proliferator-activated receptor-gamma coactivator 1) were tested by reverse transcriptase-polymerase chain reaction (RT-PCR). The protein level of GDF11 and PGC-1α were detected by Western blot. The glucose uptake was measured by 2NBDG uptake assay.

Objective

GDF11 (Growth Differentiation factor 11) has been reported to rejuvenate skeletal muscle, heart and brain in aged mice, and the aged skeletal muscle is closely related to insulin resistance. We wondered whether GDF11 has an effect on skeletal muscle insulin resistance. Materials and

Results

In high fat diet induced obese mice, both serum level of GDF11 and the expression of GDF11 in skeletal muscle decreased. Similarly, the expression of GDF11 also reduced in palmitate-treated C2C12 myotubes. In vitro, the glucose uptake and the expression of GLUT4, IRS-1 and PGC-1α significantly decreased after palmitate intervention, but GDF11 treatment did not reverse the reduction of glucose uptake and the expression of GLUT4, IRS-1 and PGC-1α in C2C12 myotubes. Conclusions: We firstly confirmed that the expression of GDF11 decreased both in the skeletal muscle of obese mice and palmitate-treated myotubes, but supplementation GDF11 does not ameliorate the palmitate-induced insulin resistance in C2C12 myotubes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。