High-salt-driven gut microbiota dysfunction aggravates prostatitis by promoting AHR/SGK1/FOXO1 axis-mediated Th17 cell differentiation.

高盐引起的肠道菌群功能障碍会促进 AHR/SGK1/FOXO1 轴介导的 Th17 细胞分化,从而加重前列腺炎

阅读:6
作者:Chen Jing, Feng Rui, Gong Bin-Bin, Wu Wei-Kang, Dai Bang-Shun, Tan Rui, Xu Wen-Long, Meng Tong, Wang Xiao-Bin, Xiao Yun-Zheng, Yang Cheng, Zhang Li, Liang Chao-Zhao
BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a frequently encountered disorder characterized by voiding symptoms and pelvic or perineal pain. Proinflammatory T helper 17 (Th17) cells are essential for triggering the development of CP/CPPS. High-salt diet (HSD) consumption has been found to cause an accumulation of sodium chloride in peripheral organs, inducing autoimmune responses via the Th17 cell axis. It is currently unknown whether HSD affects the etiology and course of CP/CPPS. METHODS: Patients diagnosed with CP/CPPS were evaluated with the National Institutes of Health Chronic Prostatitis Symptom Index scoring system, and the correlation between the symptoms of CP/CPPS with HSD was analyzed. The experimental autoimmune prostatitis (EAP) mouse was established and the mice were fed either a normal-salt diet (NSD) or HSD for 6 weeks to investigate the impact of HSD on CP/CPPS. Then, 16S ribosomal RNA sequencing and untargeted metabolomics were introduced to detect the differences in the gut microflora composition and metabolite profiles between NSD-fed and HSD-fed mice, followed by fecal microbiota transplantation, 5-hydroxyindole acetic acid (5-HIAA) supplementation, aryl hydrocarbon receptor (AHR) inhibition, and in vitro Th17 differentiation experiments, which were performed to explore the mechanisms underlying HSD-aggravated CP/CPPS. Finally, chromatin immunoprecipitation assay and quantitative polymerase chain reaction were conducted to validate whether AHR can serve as a transcription factor by interacting with the serum and glucocorticoid-regulated kinase 1 (Sgk1) promoter in CD4(+) T cells. RESULTS: Increased salt consumption had a positive correlation with symptom scores of CP/CPPS patients, which was validated by feeding EAP mice with HSD, and HSD worsened the prostate inflammation and tactile allodynia in EAP mice through promoting the differentiation of CD4(+) T cells to Th17 cells. HSD exacerbated EAP by significantly reducing the relative abundance of beneficial gut microflora, such as Lactobacillaceae, and gut microbiota metabolite 5-HIAA, which is related to tryptophan metabolism. The prostate inflammation, tactile allodynia, and proportion of Th17 cells in mice that received fecal suspensions from the EAP + HSD group were significantly more severe or higher than those in mice that received fecal suspensions from the EAP + NSD group. However, 5-HIAA supplementation ameliorated the symptoms of EAP caused by HSD through inhibiting the differentiation of CD4(+) T cells to Th17 cells, while AHR inhibition abrogated the protective effects of 5-HIAA supplementation on EAP mice fed a HSD through promoting the differentiation of CD4(+) T cells to Th17 cells. Mechanistically, it has been revealed that the SGK1/forkhead box protein O1 (FOXO1) pathway was significantly activated during cytokine-induced Th17 cell differentiation, and AHR has been shown to inhibit SGK1 transcription by interacting with the Sgk1 promoter in CD4(+) T cells to inhibit FOXO1 phosphorylation, consequently restoring the equilibrium of Th17 cell differentiation. CONCLUSION: Our findings indicated that high salt intake represented a risk factor for the development of CP/CPPS as it promoted the differentiation of CD4(+) T cells to Th17 cells through the 5-HIAA/AHR/SGK1/FOXO1 axis, which might be a potential therapeutic target for CP/CPPS.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。