Integrative cross-tissue analysis unveils complement-immunoglobulin augmentation and dysbiosis-related fatty acid metabolic remodeling during mammalian aging.

整合跨组织分析揭示了哺乳动物衰老过程中补体免疫球蛋白增强和菌群失调相关的脂肪酸代谢重塑

阅读:17
作者:Zhang Feng, Li Rong, Liu Yasong, Liang Jinliang, Gong Yihang, Xiao Cuicui, Cai Jianye, Wang Tingting, You Qiang, Zhang Jiebin, Chen Haitian, Xiao Jiaqi, Zhang Yingcai, Yang Yang, Li Hua, Yao Jia, Zhang Qi, Zheng Jun
Aging-related decline and adaptation are complex, multifaceted processes that affect various tissues and increase risk of chronic diseases. To characterize key changes in cross-tissue aging, we performed comprehensive proteomic and metabolomic analyses across 21 solid tissues and plasma samples, alongside shotgun metagenomic profiling of fecal microbial communities in young and aged mice. Our findings revealed widespread aging-rewired chronic inflammation, characterized by complement system activation in plasma and universal immunoglobulins accumulation across multiple solid tissues. This inflammatory remodeling significantly enhanced vulnerability to aging-related tissue injury. Moreover, we identified organ-specific and organ-enriched proteins with high functional specificity. Among these, aging-related proteins were closely linked to disorders arising from lipid metabolism dysfunction. Analysis of multi-tissue metabolomic and fecal metagenomic profiles revealed that aging significantly disrupted inter-tissue metabolic coupling, activities of polyunsaturated fatty acids metabolism, and gut microbiota homeostasis. Aged mice exhibited a marked decrease in Escherichia and an increase in Helicobacter, strongly correlating with alterations in omega-3 and omega-6 fatty acid abundances. Through multi-omics integration, we identified key molecular hubs driving organismal responses to aging. Collectively, our study uncovers extensive aging-associated alterations across tissues, emphasizing the interplay between systemic inflammation and dysbiosis-driven fatty acid remodeling. These findings provide deeper insights into the development of healthy aging from a cross-tissue perspective.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。