Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Oxidative Damage via the miR-191-5p/DAPK1/AKT Axis in Type 2 Diabetes.

脐带间充质干细胞衍生的细胞外囊泡通过 miR-191-5p/DAPK1/AKT 轴减轻 2 型糖尿病中的氧化损伤

阅读:9
作者:Li Anran, Chen Cong, Zhang Tongjia, Tian Yuxin, Cao Yifan, Zhao Xiaoming, Wang Liping
Human umbilical cord mesenchymal stem cell extracellular vesicles (hucMSC-EVs) exhibit remarkable potential for alleviating type 2 diabetes mellitus (T2DM). However, the role of hucMSC-EVs in T2DM, particularly concerning oxidative damage to pancreatic β cells, remains underexplored. This study utilized a high-fat diet and streptozotocin (STZ)-induced T2DM mouse model and an STZ-induced INS-1 cell damage model to investigate the effects and mechanisms of hucMSC-EVs. In the T2DM mouse model, hucMSC-EVs effectively lowered blood glucose levels, improved lipid metabolism disorders, and preserved liver function. Moreover, hucMSC-EVs enhanced insulin sensitivity and mitigated oxidative damage. Histological analysis confirmed that hucMSC-EVs marked alleviated liver, kidney, and pancreatic tissue damage. In vitro studies demonstrate that hucMSC-EVs enhance glucose absorption and glycogen synthesis in an insulin-resistant HepG2 model and stimulated insulin secretion in INS-1 cells under high-glucose conditions. In the STZ-induced INS-1 oxidative damage model, hucMSC-EVs protect against oxidative damage by increasing antioxidant enzyme activities, reducing reactive oxygen species production, and decreasing cell apoptosis. The effects were partially mediated by the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT and signal transducer and activator of transcription (STAT) signaling pathways, as well as the up-regulation of key antioxidant proteins such as Nrf2, SOD1, and Bcl2. Further research revealed that miR-191-5p, which is enriched in hucMSC-EVs, targets DAPK1 to activate the PI3K/AKT pathway, thereby contributing to the protective effects against oxidative damage. These findings highlight the critical role and underlying mechanisms of hucMSC-EVs in ameliorating metabolic dysfunction in T2DM, particularly the protective effects against oxidative damage, thus providing a novel strategy for the treatment of T2DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。