The biocompatibility, osteoconductivity and porous structure of coral make it a popular material for bone regeneration. However, coral mismatches host bone degradation rates and lacks osteoinductivity. No prior research has investigated the physicochemical properties of strontium-doped coralline hydroxyapatite (Sr-CHA), magnesium-doped (Mg-CHA) and strontium- and magnesium-co-doped (Sr-Mg-CHA), especially their osteogenic mechanisms. This study synthesized CHA doped with osteoinductive elements (Sr, Mg and Sr-Mg) via a hydrothermal reaction to preserve 26.5-33.5% of the unconverted inner core of calcium carbonate (CaCO(3)). Under identical reaction circumstances, the Sr doping ratio in the Sr-CHA outperformed Mg in the Mg-CHA. In contrast, Sr and Mg mutually inhibit each other during co-doping in the Sr-Mg-CHA. The Sr-CHA nanorods on nanocluster spheres were the longest, while the Mg-CHA were the shortest, with the Sr-Mg-CHA occupying an intermediate length. The Sr-CHA, Mg-CHA and Sr-Mg-CHA exhibited 16 times the specific surface area and 14 times the pore volume of the coral and displayed better biocompatibility and expression levels of osteogenesis-related genes and proteins (e.g. ALP, Runx2, COL I, OCN and OPN) compared to coral in vitro, as well as improved osteogenesis than coral or Bio-Oss(®)  in vivo. With its optional Sr(2+) release concentration and degradation rates and large specific surface area and pore volume, the Sr-CHA performs the best. This study improved bone tissue engineering and regenerative medicine by enhancing the understanding of doped CHA and revealing new ways to overcome bone repair material problems.
Strontium/magnesium-doped coralline hydroxyapatite for bone regeneration
用于骨再生的锶/镁掺杂珊瑚状羟基磷灰石
阅读:2
作者:Bixiu Chen ,Liyan Zhang ,Zhou Zhong ,Chunyu Liu ,Haobo Pan
| 期刊: | Regenerative Biomaterials | 影响因子: | 5.600 |
| 时间: | 2025 | 起止号: | 2025 May 21:12:rbaf036. |
| doi: | 10.1093/rb/rbaf036 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
