Cochlear hair cells are essential for hearing, and their stereocilia bundles are critical for mechanotransduction. However, analyzing the 3D morphology of these bundles can be challenging due to their complex organization and the presence of other cellular structures in the tissue. To address this, we developed VASCilia (Vision Analysis StereoCilia), a Napari plugin suite that automates the analysis of 3D confocal microscopy datasets of phalloidin-stained cochlear hair cell bundles. VASCilia includes five deep learning-based models that streamline the analysis process, including: (1) Z-Focus Tracker (ZFT) for selecting relevant slices in a 3D image stack; (2) PCPAlignNet (Planar Cell Polarity Alignment Network) for automated orientation of image stacks; (3) a segmentation model for identifying and delineating stereocilia bundles; (4) a tonotopic Position Prediction tool; and (5) a classification tool for identifying hair cell subtypes. In addition, VASCilia provides automated computational tools and measurement capabilities. Using VASCilia, we found that the total actin content of stereocilia bundles (as measured by phalloidin staining) does not necessarily increase with bundle height, which is likely due to differences in stereocilia thickness and number. This novel biological finding demonstrates the power of VASCilia in facilitating detailed quantitative analysis of stereocilia. VASCilia also provides a user-friendly interface that allows researchers to easily navigate and use the tool, with the added capability to reload all their analyses for review or sharing purposes. We believe that VASCilia will be a valuable resource for researchers studying cochlear hair cell development and function, addressing a longstanding need in the hair cell research community for specialized deep learning-based tools capable of high-throughput image quantitation. We have released our code along with a manually annotated dataset that includes approximately 55 3D stacks featuring instance segmentation (https://github.com/ucsdmanorlab/Napari-VASCilia). This dataset comprises a total of 502 inner and 1,703 outer hair cell bundles annotated in 3D. As the first open-source dataset of its kind, we aim to establish a foundational resource for constructing a comprehensive atlas of cochlea hair cell images. Ultimately, this initiative will support the development of foundational models adaptable to various species, markers, and imaging scales to accelerate advances within the hearing research community.
VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles.
VASCilia(视觉分析立体纤毛):用于基于深度学习的耳蜗毛细胞立体纤毛束 3D 分析的 Napari 插件
阅读:5
作者:Kassim Yasmin M, Rosenberg David B, Das Samprita, Huang Zhuoling, Rahman Samia, Shammaa Ibraheem Al, Salim Samer, Huang Kevin, Renero Alma, Miller Cayla, Ninoyu Yuzuru, Friedman Rick A, Indzhykulian Artur, Manor Uri
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 15 |
| doi: | 10.1101/2024.06.17.599381 | 靶点: | ASC |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
