Ricin, a ribosome-inactivating lectin from Ricinus communis seeds, has been used as a bioterrorism agent in multiple cases. While passive immunotherapy with anti-ricin antibodies shows promise in preclinical studies, no approved countermeasure exists. Developing effective monoclonal antibodies (mAbs) is challenging, requiring epitope targeting that ensures neutralization of the two most dominant natural ricin isoforms (D and E). Moreover, high-affinity binding does not always correlate with toxin neutralization, highlighting the importance of epitope specificity in driving protection. Here, we characterized a panel of 17 anti-ricin antibodies, including VHH and IgG mAbs, to determine their affinities, selectivity, and epitopes. Using surface plasmon resonance (SPR) and biolayer interferometry (BLI), we evaluated antibody affinities for the two ricin isoforms (D and E), as well as for ricin agglutinin, a related lectin with markedly lower toxicity. Epitope determination was performed using (1) SPR-based epitope binning, enhanced by network analysis for streamlined bin visualization, and (2) deep mutational scanning with yeast surface display to identify key epitope residues. BLI effectively distinguished low- and high-affinity interactions, while SPR provided superior resolution for determining the highest affinities and lowest dissociation rates. Both epitope-mapping strategies yielded highly consistent results, allowing the identification of critical epitopes associated with potent neutralization and cross-reactivity between ricin isoforms. This study advances our understanding of ricin neutralization by this panel of antibodies, providing key insights into their affinity, epitope specificity, and cross-reactivity. These findings contribute to the rational design of antibody-based therapeutics for ricin intoxication.
Combining deep mutational scanning and SPR binning approaches for large-scale epitope identification of anti-ricin antibodies.
结合深度突变扫描和SPR分箱方法,进行抗蓖麻毒素抗体的大规模表位鉴定
阅读:17
作者:Kot Ophélie, Lequesne Lois, Mages Hans Werner, Dubois Steven, Piquet Paloma, Becher François, Maillère Bernard, Dorner Brigitte G, Simon Stéphanie, Stern Daniel, Nozach Hervé
| 期刊: | MAbs | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Dec;17(1):2544922 |
| doi: | 10.1080/19420862.2025.2544922 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
