The contributions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells to vaccine efficacy and durability are unclear. We investigated relationships between mRNA vaccine-induced spike-specific interferon- gamma (IFN-γ) and interleukin-2 (IL-2) T-cell responses and neutralizing antibody development in long-term care home staff doubly vaccinated with BNT162b2 or mRNA-1273. The impacts of pre-existing cross-reactive T-cell immunity on cellular and humoral responses to vaccination were additionally assessed. Mathematical modeling of the kinetics of spike-specific IFN-γ and IL-2 T-cell responses over 6 months post-second dose was bifurcated into recipients who exhibited gradual increases with doubling times of 155 and 167 days or decreases with half-lives of 165 and 132 days, respectively. Differences in kinetics did not correlate with clinical phenotypes. Serological anti-spike IgG, anti-receptor binding domain (RBD) IgG, anti-spike IgA, and anti-RBD IgA antibody levels otherwise decayed in all participants with half-lives of 63, 57, 79, and 46 days, respectively, alongside waning neutralizing capacity (t(1/2) = 408 days). Spike-specific T-cell responses induced at 2-6 weeks positively correlated with live viral neutralization at 6 months post-second dose, especially in hybrid immune individuals. Participants with pre-existing cross-reactive T-cell immunity to SARS-CoV-2 exhibited greater spike-specific T-cell responses, reduced anti-RBD IgA antibody levels, and a trending increase in neutralization at 2-6 weeks post-second dose. Non-spike-specific T-cells predominantly targeted SARS-CoV-2 non-structural protein at 6 months post-second dose in cross-reactive participants. mRNA vaccination was lastly shown to induce off-target T-cell responses against unrelated antigens. In summary, vaccine-induced spike-specific T-cell immunity appeared to influence serological neutralizing capacity, with only a modest effect induced by pre-existing cross-reactivity. IMPORTANCE: Our findings provide valuable insights into the potential contributions of mRNA vaccine-induced spike-specific T-cell responses to the durability of neutralizing antibody levels in both uninfected and hybrid immune recipients. Our study additionally sheds light on the precise impacts of pre-existing cross-reactive T-cell immunity to severe acute respiratory syndrome coronavirus 2 on the magnitude and kinetics of cellular and humoral responses to vaccination. Accordingly, our data will help optimize the development of next-generation T cell-based coronavirus vaccines and vaccine regimens to maximize efficacy and durability.
mRNA vaccine-induced SARS-CoV-2 spike-specific IFN-γ and IL-2 T-cell responses are predictive of serological neutralization and are transiently enhanced by pre-existing cross-reactive immunity.
mRNA疫苗诱导的SARS-CoV-2刺突蛋白特异性IFN-γ和IL-2 T细胞反应可预测血清学中和作用,并可被预先存在的交叉反应免疫暂时增强
阅读:3
作者:Samaan Philip, Korosec Chapin S, Budylowski Patrick, Chau Serena L L, Pasculescu Adrian, Qi Freda, Delgado-Brand Melanie, Tursun Tulunay R, Mailhot Geneviève, Dayam Roya Monica, Arnold Corey R, Langlois Marc-André, Mendoza Justin, Morningstar Thomas, Law Ryan, Mihelic Erik, Sheikh-Mohamed Salma, Cao Eric Yixiao, Paul Nimitha, Patel Anjali, de Launay Keelia Quinn, Boyd Jamie M, Takaoka Alyson, Colwill Karen, Matveev Vitaliy, Yue Feng Yun, McGeer Allison, Straus Sharon, Gingras Anne-Claude, Heffernen Jane M, Ostrowski Mario
| 期刊: | Journal of Virology | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 99(3):e0168524 |
| doi: | 10.1128/jvi.01685-24 | 研究方向: | 细胞生物学 |
| 疾病类型: | 新冠 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
