Neutrophil extracellular traps (NETs) act as a vital first line of defence against tissue damage and pathogens, playing a significant role in improving diseases such as intestinal ischemia reperfusion injury (IRI). However, we observed that after intestinal injury, intestinal bacteria and lipopolysaccharides (LPS) can enter the circulatory system, leading to a significant secondary increase in NETs production and the subsequent activation of a coagulation cascade. This phenomenon contributes to a pathological process known as the 'second strike' of NETs, which exaggerates intestinal damage and microcirculation disturbance. Selectively mitigating the detrimental effects associated with this second strike presents a promising therapeutic strategy. We developed an innovative conjugate of stroke-homing peptide (SHp) and DNase1 (SHp-DNase1) to enhance the stability of DNase in the bloodstream while selectively targeting NETs in thromboembolic events. The effects of SHp-DNase1 on blood flow, ischemia, and vascular leakage were evaluated in a mouse model using laser Doppler flowmetry and an in vivo imaging system. Levels of LPS and NETs were elevated in patients with IRI. Similarly, the expression of NETs and LPS was upregulated in mice with intestinal IRI. In vivo imaging revealed disturbances in intestinal microcirculation, accompanied by intestinal leakage, which were effectively reversed by the administration of SHp-DNase1. Almost all of the SHp-DNase1 localised to the gastrointestinal tract, demonstrating the effective targeting of DNase1 to the site of intestinal injury via SHp guidance. Furthermore, the combination of SHp-DNase1 and CRO significantly reduced the expression of ischemia-inducible factors, leading to a marked decrease in mortality in the mouse model. These findings suggest that intestinal LPS leakage correlated with NETs exacerbation plays a critical role in IRI. The combination of SHp-DNase1 and CRO is an effective treatment strategy by simultaneously controlling inflammation and addressing microcirculatory disorders induced by NETs in the therapy of IRI.
Stroke-Homing Peptide-DNase1 Alleviates Intestinal Ischemia Reperfusion Injury by Selectively Degrading Neutrophil Extracellular Traps.
卒中归巢肽-DNase1通过选择性降解中性粒细胞胞外陷阱来缓解肠缺血再灌注损伤
阅读:3
作者:Liu Tingting, Lv Xinrong, Xu Qingshan, Qi Xiuting, Qiu Shenghui, Luan Yaqi, Shen Na, Cheng Jing, Jin Lan, Tian Tian, Liu Wentao, Jin Lai, Jia Zhongzhi
| 期刊: | Cell Proliferation | 影响因子: | 5.600 |
| 时间: | 2025 | 起止号: | 2025 Aug;58(8):e70010 |
| doi: | 10.1111/cpr.70010 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
