Computer-vision and machine-learning (ML) approaches are being developed to provide scalable, unbiased, and sensitive methods to assess mouse behavior. Here, we used the ML-based variational animal motion embedding (VAME) segmentation platform to assess spontaneous behavior in humanized App knockin and transgenic APP models of Alzheimer's disease (AD) and to test the role of AD-related neuroinflammation in these behavioral manifestations. We found marked alterations in spontaneous behavior in App(NL-G-F) and 5xFAD mice, including age-dependent changes in motif utilization, disorganized behavioral sequences, increased transitions, and randomness. Notably, blocking fibrinogen-microglia interactions in 5xFAD-Fgg(γ390-396A) mice largely prevented spontaneous behavioral alterations, indicating a key role for neuroinflammation. Thus, AD-related spontaneous behavioral alterations are prominent in knockin and transgenic models and sensitive to therapeutic interventions. VAME outcomes had higher specificity and sensitivity than conventional behavioral outcomes. We conclude that spontaneous behavior effectively captures age- and sex-dependent disease manifestations and treatment efficacy in AD models.
Machine learning reveals prominent spontaneous behavioral changes and treatment efficacy in humanized and transgenic Alzheimer's disease models.
机器学习揭示了人源化和转基因阿尔茨海默病模型中显著的自发行为变化和治疗效果
阅读:5
作者:Miller Stephanie R, Luxem Kevin, Lauderdale Kelli, Nambiar Pranav, Honma Patrick S, Ly Katie K, Bangera Shreya, Bullock Mary, Shin Jia, Kaliss Nick, Qiu Yuechen, Cai Catherine, Shen Kevin, Mallen K Dakota, Yan Zhaoqi, Mendiola Andrew S, Saito Takashi, Saido Takaomi C, Pico Alexander R, Thomas Reuben, Roberson Erik D, Akassoglou Katerina, Bauer Pavol, Remy Stefan, Palop Jorge J
| 期刊: | Cell Reports | 影响因子: | 6.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 26; 43(11):114870 |
| doi: | 10.1016/j.celrep.2024.114870 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
