Epigenetic regulation of NfatC1 transcription and osteoclastogenesis by nicotinamide phosphoribosyl transferase in the pathogenesis of arthritis

烟酰胺磷酸核糖转移酶在关节炎发病机制中对 NfatC1 转录和破骨细胞生成的表观遗传调控

阅读:10
作者:Xuanan Li, Shamima Islam, Min Xiong, Ndona N Nsumu, Mark W Lee Jr, Li Qin Zhang, Yasuyoshi Ueki, Daniel P Heruth, Guanghua Lei, Shui Qing Ye

Abstract

Nicotinamide phosphoribosyltransferase (NAMPT) functions in NAD synthesis, apoptosis, and inflammation. Dysregulation of NAMPT has been associated with several inflammatory diseases, including rheumatoid arthritis (RA). The purpose of this study was to investigate NAMPT's role in arthritis using mouse and cellular models. Collagen-induced arthritis (CIA) in DBA/1J Nampt +/- mice was evaluated by ELISA, micro-CT, and RNA-sequencing (RNA-seq). In vitro Nampt loss-of-function and gain-of-function studies on osteoclastogenesis were examined by TRAP staining, nascent RNA capture, luciferase reporter assays, and ChIP-PCR. Nampt-deficient mice presented with suppressed inflammatory bone destruction and disease progression in a CIA mouse model. Nampt expression was required for the epigenetic regulation of the Nfatc1 promoter and osteoclastogenesis. Finally, RNA-seq identified 690 differentially expressed genes in whole ankle joints which associated (P < 0.05) with Nampt expression and CIA. Selected target was validated by RT-PCR or functional characterization. We have provided evidence that NAMPT functions as a genetic risk factor and a potential therapeutic target to RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。