The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Caenorhabditis elegans Hook homologue ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we demonstrate that ZYG-12 recruits dynein to EE in epithelia. We identify and functionally characterize the homologues of FTS (UBC-19) and FHIP (FHIP-1) that constitute the C. elegans FHF complex, validate the predicted FHIP-1-RAB-5 binding interface in vivo, and show that ZYG-12 forms FHF via a conserved segment that precedes, and is distinct from, its C-terminal NE targeting domain. Finally, we show that C-terminal ZYG-12 splice isoforms differ in their ability to target to the NE and EE. We conclude that the C. elegans Hook adaptor evolved to recruit dynein to two distinct organelles, and that cargo specificity of ZYG-12 is regulated by alternative splicing.
ZYG-12/Hook's dual role as a dynein adaptor for early endosomes and nuclei is regulated by alternative splicing of its cargo binding domain.
ZYG-12/Hook 作为早期内体和细胞核的动力蛋白衔接蛋白的双重作用,受其货物结合域的选择性剪接调控
阅读:5
作者:Carvalho Cátia, Moreira Matilde, Barbosa Daniel J, Chan Fung-Yi, Koehnen Carlota Boal, Teixeira Vanessa, Rocha Helder, Green Mattie, Carvalho Ana Xavier, Cheerambathur Dhanya K, Gassmann Reto
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 1; 36(2):ar19 |
| doi: | 10.1091/mbc.E24-08-0364 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
