The glycosyltransferase ST3GAL4 drives immune evasion in acute myeloid leukemia by synthesizing ligands for the glyco-immune checkpoint receptor Siglec-9.

糖基转移酶 ST3GAL4 通过合成糖免疫检查点受体 Siglec-9 的配体,驱动急性髓系白血病的免疫逃逸

阅读:10
作者:Krishnamoorthy Vignesh, Daly John, Kim Jimmy, Piatnitca Lidia, Yuen Katie A, Kumar Bhoj, Taherzadeh Ghahfarrokhi Mehrnoush, Bui Tom Q T, Azadi Parastoo, Vu Ly P, Wisnovsky Simon
Immunotherapy has demonstrated promise as a treatment for acute myeloid leukemia (AML). However, there is still an urgent need to identify new molecules that inhibit the immune response to AML. Most prior research in this area has focused on protein-protein interaction interfaces. While carbohydrates also regulate immune recognition, the role of cell-surface glycans in driving AML immune evasion is comparatively understudied. The Siglecs, for example, are an important family of inhibitory, glycan-binding signaling receptors that have emerged as prime targets for cancer immunotherapy in recent years. In this study, we find that AML cells express ligands for the receptor Siglec-9 at high levels. Integrated CRISPR genomic screening and clinical bioinformatic analysis identified ST3GAL4 as a potential driver of Siglec-9 ligand expression in AML. Depletion of ST3GAL4 by CRISPR-Cas9 knockout (KO) dramatically reduced the expression of Siglec-9 ligands in AML cells. Mass spectrometry analysis of cell-surface glycosylation in ST3GAL4 KO cells revealed that Siglec-9 primarily binds N-linked sialoglycans on these cell types. Finally, we found that ST3GAL4 KO enhanced the sensitivity of AML cells to phagocytosis by Siglec-9-expressing macrophages. This work reveals a novel axis of immune evasion and implicates ST3GAL4 as a possible target for  immunotherapy in AML.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。