Neurometabolomic impacts of wood smoke and protective benefits of anti-aging therapeutics in aged female C57BL/6J mice.

木烟对老年雌性 C57BL/6J 小鼠神经代谢的影响及抗衰老疗法的保护作用

阅读:10
作者:Scieszka David, Hulse Jonathan, Gu Haiwei, Barkley-Levenson Amanda, Barr Ed, Garcia Marcus, Begay Jessica G, Herbert Guy, McCormick Mark, Brigman Jonathan, Ottens Andrew, Bleske Barry, Bhaskar Kiran, Campen Matthew J
BACKGROUND: Wildland fires have become progressively more extensive over the past 30 years in the United States, routinely generating smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact of biomass-derived smoke on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. METHODS: Mice were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 448 μg particulate matter (PM)/m(3) per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib + quercetin; DQ); or both RNMN with DQ (RNDQ). RESULTS: Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD + within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by behavioral changes, including increased immobility in a forced swim test, and neuroinflammatory markers that persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. DISCUSSION: Taken together, these findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Further examination is necessary to determine the age-specific and species-determinant response pathways and duration before complete resolution occurs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。