Heart failure (HF) remains a clinical challenge with cardiac dysfunction typically progressing even with treatment, and heart transplants only available to small numbers. We previously identified phosphoinositide 3-kinase (PI3K, p110α) as a master regulator of exercise-induced cardioprotection, and showed that gene therapy, incorporating a constitutively active form of PI3K (caPI3K) improved function of the failing mouse heart. However, this approach was not cardiac-specific and the gene therapy was challenging to manufacture. The aim of this study was to develop new PI3K-based gene therapies with more optimal properties for clinical translation. We generated and assessed adeno-associated viruses (AAV6) encoding various PI3K constructs, with different enhancers, promoters and transgene components in healthy adult male mice. The most promising AAV construct based on AAV expression, cardiac-specificity, and ease of manufacture contained a cardiac troponin T (cTnT) promoter together with a small region of the regulatory subunit of PI3K (iSH2), and an intron from the β-globin gene which enhances transcription (IVS2). This AAV (1 Ã 10(12), 2 Ã 10(12) vg) was administered to mice with myocardial ischemia/reperfusion injury (I/R: 1 h ischemia with reperfusion; AAV delivered 24 h post-I/R). Direct cardiac injections of PI3K-based AAVs were also performed in healthy adult female sheep. I/R mouse hearts treated with the AAV6-cTnT-IVS2-iSH2 displayed increased phosphorylation of Akt, but no improvement in cardiac function or structure was observed. AAV6-cTnT-IVS2-iSH2 successfully transduced healthy sheep hearts which increased endogenous PI3K catalytic activity. Further testing/optimization of the AAV (time of delivery and/or duration) will be required to assess the therapeutic potential of this approach.
Generation and evaluation of a novel PI3K-targeting gene therapy in the failing mouse heart and healthy sheep heart.
在衰竭小鼠心脏和健康绵羊心脏中生成和评估新型 PI3K 靶向基因疗法
阅读:6
作者:Bass-Stringer Sebastian, Donner Daniel G, May Clive N, Matsumoto Aya, Masterman Emma I, D'Elia Aascha A, Chen Yi Ching, Kiriazis Helen, Luo Jieting, Chooi Roger, Ming Clara Liu Chung, Gregorevic Paul, Thomas Colleen J, Bernardo Bianca C, Weeks Kate L, McMullen Julie R
| 期刊: | Journal of Molecular and Cellular Cardiology Plus | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 31; 13:100478 |
| doi: | 10.1016/j.jmccpl.2025.100478 | 种属: | Mouse、Sheep |
| 研究方向: | 心血管 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
