Plant pathogens significantly threaten food security and agricultural sustainability, with climate change expected to exacerbate outbreaks. Despite these growing threats, current agrochemical delivery remains untargeted and inefficient. In this study, we develop surface ligand-engineered nanoparticles for targeted delivery to stomata (SENDS), a nanocarrier system designed to target stomatal guard cells, which serve as key pathogen entry points into the plant apoplast. Our approach employs rational ligand engineering of porous nanoparticles, optimizing ligand orientation for efficient stomata targeting across different plant species. Foliar application of SENDS encapsulating an antimicrobial plant alkaloid reduces colonization of Xanthomonas campestris, a major crop pathogen, by 20-fold compared to untargeted nanocarriers. Quantitative assessment of stomatal aperture movement and photosynthetic performance confirms that SENDS enhance plant defense against invading pathogens without disrupting natural stomatal function. This nanobiotechnology approach provides a targeted strategy to improve plant disease resistance, offering new insights into nanocarrier design for more resilient and sustainable agriculture.
Stomata-targeted nanocarriers enhance plant defense against pathogen colonization.
靶向气孔的纳米载体可增强植物对病原体定殖的防御能力
阅读:7
作者:Puangpathumanond Suppanat, Chee Heng Li, Sevencan Cansu, Yang Xin, Lau On Sun, Lew Tedrick Thomas Salim
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 23; 16(1):4816 |
| doi: | 10.1038/s41467-025-60112-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
