Skeletal muscle atrophy is often triggered by catabolic conditions such as fasting, malnutrition and chronic diseases; however, the efficacy of nutritional supplementation in maintaining muscle mass and preventing muscle atrophy remains controversial. The present study aimed to compare the inhibitory effects of various nutritional substrates on starvationâinduced catabolic changes and muscle cell atrophy. C2C12 muscle cells were starved for up to 24 h in medium lacking serum and main nutrients (glucose, glutamine and pyruvate). To assess the effects of exogenous substrates, the cells were incubated in starvation medium and individually supplemented with each of the following nutrients: Glucose, amino acids, fatty acids, lactate or ketone bodies. The expression of each gene and protein was analyzed by reverse transcriptionâquantitative PCR and western blotting, respectively. Mitochondrial activity was determined by MTT assay and cell morphology was observed by immunofluorescence staining. The results revealed that starvation for >3 h suppressed mitochondrial activity, and after 5 h of starvation, the expression levels of several metabolic genes were increased; however, the levels of most, with the exception of Scot and Cptâ1b, were suppressed after 24 h. Protein degradation and a decrease in protein synthesis were observed after 5 h of starvation, followed by autophagy with morphological atrophy at 24 h. Supplementation with specific substrates, with the exception of leucine, such as glucose, glutamine, lactic acid or αâketoglutarate, attenuated the suppression of mitochondrial activity, and altered gene expression, protein degradation and myotube atrophy in starved myotubes. Furthermore, the decrease in intracellular ATP production after 24 h of starvation was reversed by restoring glycolysis in glucoseâtreated cells, and via an increase in mitochondrial respiration in cells treated with glutamine, lactic acid or αâketoglutarate. In conclusion, increasing the availability of glucose, glutamine, lactic acid or αâketoglutarate may be beneficial for countering muscle atrophy associated with inadequate nutrient intake.
Glucose, glutamine, lactic acid and αâketoglutarate restore metabolic disturbances and atrophic changes in energyâdeprived muscle cells.
葡萄糖、谷氨酰胺、乳酸和α-酮戊二酸可恢复能量不足的肌肉细胞的代谢紊乱和萎缩变化
阅读:12
作者:Ikeda Miu, Matsumoto Moe, Tamura Miki, Kobayashi Masaki, Iida Kaoruko
| 期刊: | Molecular Medicine Reports | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jul |
| doi: | 10.3892/mmr.2025.13562 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
