OBJECTIVE: Mammalian sperm acquire fertilizing ability in the female reproductive tract and develop hyperactivated motility, which is indispensable for male fertility. Hyperactivated motility is initiated by Ca2+ influx via the sperm-specific ion channel, CatSper. CATSPER1, a CatSper pore subunit, possesses a long N-terminal intracellular domain and its degradation correlates with unsuccessful sperm migration in the female tract. However, the cellular function and molecular significance of the CATSPER1 N-terminal domain are not well understood. Here, we identify the interactome of the CATSPER1 N-terminal domain and propose a function for the intracellular domain in mammalian sperm. METHODS: To identify CATSPER1 N-terminus interactome, we produced recombinant CATSPER1-N-terminus in bacterial system. The purified protein was incubated with testicular lysates and eluted together with testicular interacting proteins. The elutes were subjected to proteomic analysis and CATSPER1-N-terminus interactome was profiled. Identified proteins were further analyzed by functional annotation. RESULTS: We purified the partial CATSPER1 N-terminal domain and identified 57 testicular proteins as domain interactomes using mass spectrometry analysis. Functional annotation analysis revealed that 106 gene ontologies were significantly enriched, 16 of which were related to redox processes. We found that antioxidant enzymes, such as PARK7 and PRDX2, 4, and 6, were included in the enriched redox-related gene ontologies. CONCLUSION: These results suggest that the CATSPER1 N-terminus could function in defending against oxidative stress to support the successful migration of mammalian sperm to fertilizing sites in the female reproductive tract.
Intracellular domain of CATSPER1 could serve as a cytoplasmic platform for redox processes in mammalian sperm.
CATSPER1 的细胞内结构域可作为哺乳动物精子中氧化还原过程的细胞质平台
阅读:6
作者:Kim Jingon, Hwang Jae Yeon
| 期刊: | Animal Bioscience | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 Apr;38(4):655-664 |
| doi: | 10.5713/ab.24.0631 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
