Bromodomain proteins IBD1 and IBD2 link histone acetylation to SWR1- and INO80-mediated H2A.Z regulation in Tetrahymena.

在四膜虫中,溴结构域蛋白 IBD1 和 IBD2 将组蛋白乙酰化与 SWR1 和 INO80 介导的 H2A.Z 调控联系起来

阅读:7
作者:Garg Jyoti, Saettone Alejandro, Nabeel-Shah Syed, Dang Steven, Khalid Abdul Hadi, Loehr Jérémy, Petrova Alexandra, Burns James D, Karabatsos Peter, Shibin Sherin, Wahab Suzanne, Taverna Sean D, Greenblatt Jack F, Lambert Jean-Philippe, Fillingham Jeffrey
BACKGROUND: INO80 and SWR1 are evolutionarily related ATP-dependent chromatin remodeling complexes that regulate the chromatin occupancy of the histone variant H2A.Z, playing critical roles in transcriptional regulation, genome replication, and DNA repair. While the H2A.Z-related functions of INO80 and SWR1 are well characterized in budding yeast and metazoans, much less is known about their composition and chromatin-targeting mechanisms outside of the Opisthokonts. We previously found that a distinct bromodomain-containing protein, IBD1, is involved in multiple chromatin-related complexes, including the SWR1-complex, in the ciliate protozoan Tetrahymena thermophila. RESULTS: Here, we report that a closely related bromodomain-containing protein, IBD2, functions as an acetyl lysine reader module within a putative INO80 complex. Through iterative proteomic analyses, we show that the Tetrahymena INO80 complex retains several conserved subunits found in its yeast and metazoan counterparts. In vitro binding assays reveal that recombinant IBD2 preferentially recognizes acetylated histone H3 tails. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) demonstrates that IBD2 is enriched near transcription start sites and promoter regions. Notably, the IBD1 and IBD2 genomic binding profiles strongly correlate with that of H2A.Z (Hv1), supporting their functional association with the SWRI- and INO80-complexes. CONCLUSIONS: Together, our findings support a model in which H2A.Z chromatin dynamics are modulated by SWR1- and INO80-complexes that are differentially recruited to chromatin via distinct bromodomain proteins that recognize specific histone acetylation marks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。