Skeletal muscle diseases often exhibit fiber-type-specific characteristics and pose substantial clinical challenges, necessitating innovative therapies. The extracellular matrix (ECM) plays a pivotal role in muscle physiology and regeneration, influencing cell differentiation. However, its specific role and mechanisms influencing muscle fiber type specification remain insufficiently understood. In this study, C2C12(GFP) myoblasts were differentiated into myofibers on plates coated with fibronectin, Collagen I, and Geltrexâ¢. Differentiation occurred successfully across all ECM substrates, resulting in myofiber formation. Quantitative polymerase chain reaction (qPCR) analysis confirmed myogenic marker expression patterns, indicating decreased Pax7 and increased Myog levels by day 7. Protein analysis through Western blot and immunofluorescence assays along with transcriptomic profiling through RNA sequencing consistently indicated that Collagen I promoted slow-type fibers development, as evidenced by increased slow myofiber protein expression and the upregulation of slow fiber-associated genes, potentially mediated by pathways involving calcineurin/NFAT, MEF2, MYOD, AMPK, PI3K/AKT, and ERK1. In contrast, fibronectin and Geltrex⢠led to fast-type fiber development, with elevated fast-type fiber protein levels and upregulation of fast fiber-associated genes, possibly through activation of HIF1A, FOXO1, NFKB, and ERK2. These findings elucidate ECM-mediated muscle fiber type differentiation mechanisms, informing future targeted therapies for muscle regeneration.
Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture.
通过改变成肌细胞培养中的基质涂层来增强骨骼肌纤维类型的转变
阅读:14
作者:Riskawati Yhusi Karina, Lin Chuang-Yu, Niwa Akira, Chang Hsi
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 12; 26(12):5637 |
| doi: | 10.3390/ijms26125637 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
