Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture.

通过改变成肌细胞培养中的基质涂层来增强骨骼肌纤维类型的转变

阅读:6
作者:Riskawati Yhusi Karina, Lin Chuang-Yu, Niwa Akira, Chang Hsi
Skeletal muscle diseases often exhibit fiber-type-specific characteristics and pose substantial clinical challenges, necessitating innovative therapies. The extracellular matrix (ECM) plays a pivotal role in muscle physiology and regeneration, influencing cell differentiation. However, its specific role and mechanisms influencing muscle fiber type specification remain insufficiently understood. In this study, C2C12(GFP) myoblasts were differentiated into myofibers on plates coated with fibronectin, Collagen I, and Geltrex™. Differentiation occurred successfully across all ECM substrates, resulting in myofiber formation. Quantitative polymerase chain reaction (qPCR) analysis confirmed myogenic marker expression patterns, indicating decreased Pax7 and increased Myog levels by day 7. Protein analysis through Western blot and immunofluorescence assays along with transcriptomic profiling through RNA sequencing consistently indicated that Collagen I promoted slow-type fibers development, as evidenced by increased slow myofiber protein expression and the upregulation of slow fiber-associated genes, potentially mediated by pathways involving calcineurin/NFAT, MEF2, MYOD, AMPK, PI3K/AKT, and ERK1. In contrast, fibronectin and Geltrex™ led to fast-type fiber development, with elevated fast-type fiber protein levels and upregulation of fast fiber-associated genes, possibly through activation of HIF1A, FOXO1, NFKB, and ERK2. These findings elucidate ECM-mediated muscle fiber type differentiation mechanisms, informing future targeted therapies for muscle regeneration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。