High Rosmarinic Acid Content Melissa officinalis L. Phytocomplex Modulates Microglia Neuroinflammation Induced by High Glucose.

高迷迭香酸含量的香蜂花植物复合物调节高葡萄糖诱导的小胶质细胞神经炎症

阅读:8
作者:Videtta Giacomina, Sasia Chiara, Galeotti Nicoletta
Diabetic patients experience hyperglycemia, which can affect multiple organs, including brain function, leading to disabling neurological complications. Hyperglycemia plays a key role in promoting neuroinflammation, the most common complication in diabetic individuals, through the activation of microglia. Attenuating hyperglycemia-related neuroinflammation in microglia may reduce diabetes-associated neurological comorbidities. Natural remedies containing phenolic compounds have shown efficacy in mitigating microglia-mediated neuroinflammation. The aim of this study was to investigate the potential of a Melissa officinalis L. (MO) phytocomplex, obtained from plant cell cultures and enriched in its main polyphenolic constituent, rosmarinic acid (RA), in attenuating hyperglycemia-induced neuroinflammation in microglia. A time-course morphological analysis of BV2 microglial cells exposed to high glucose (HG) levels showed a shift towards a proinflammatory phenotype, peaking after 48 h, which was reversed by pretreatment with MO. Biochemical assays revealed increased expression of the microglial marker CD11b (187%), activation of the NF-κB pathway (179%), expression of iNOS (225%), enhanced phosphorylation of ERK1/2 (180%), and increased expression of the proinflammatory cytokine IL-6 (173%). Pretreatment with MO prevented the aberrant expression of these proinflammatory mediators and restored SIRT1 levels. Exposure of neuronal SH-SY5Y cells to the conditioned medium from HG-exposed microglia significantly reduced cell viability. MO counteracted this effect, exhibiting neuroprotective activity. RA showed efficacy comparable to that of MO. In conclusion, MO and RA attenuated microglia-mediated oxidative imbalance and neuroinflammation under HG exposure by inhibiting the morphological shift toward a proinflammatory phenotype induced by HG and abrogating the subsequent activation of the downstream ERK1/2-NF-κB-iNOS pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。