BACKGROUND & AIMS: The protection provided by rotavirus (RV) vaccines is highly heterogeneous among individuals. We hypothesized that microbiota composition might influence RV vaccine efficacy. METHODS: First, we examined the potential of segmented filamentous bacteria (SFB) colonization to influence RV vaccine efficacy in mice. Next, we probed the influence of human microbiomes on RV vaccination via administering mice fecal microbial transplants (FMTs) from children with robust or minimal RV vaccine responsiveness. Post-FMT, mice were subjected to RV vaccination followed by RV challenge. RESULTS: SFB colonization induced a phenotype that was reminiscent of RV vaccine failure (ie, failure to generate RV antigens and, consequently, anti-RV antibodies following RV vaccination resulting in proneness to RV challenge after SFB levels diminished). FMTs from children to mice recapitulated donor vaccination phenotype. Specifically, mice receiving FMTs from high-responsive vaccinees copiously shed RV antigens and robustly generated anti-RV antibodies following RV vaccination. Concomitantly, such mice were impervious to RV challenge. In contrast, mice receiving FMTs from children who had not responded to RV vaccination exhibited only modest responses to RV vaccination and, concomitantly, remained prone to RV challenge. Microbiome analysis ruled out a role for SFB but suggested involvement of Clostridium perfringens. Oral administration of cultured C. perfringens to gnotobiotic mice partially recapitulated the RV vaccine non-responder phenotype. Analysis of published microbiome data found C. perfringens abundance in children modestly associated with RV vaccine failure. CONCLUSION: Microbiota composition influences RV vaccine efficacy with C. perfringens being one, perhaps of many, potential contributing taxa.
Select Gut Microbiota Impede Rotavirus Vaccine Efficacy.
部分肠道菌群会降低轮状病毒疫苗的效力
阅读:3
作者:Ngo Vu L, Wang Yanling, Wang Yadong, Shi Zhenda, Britton Robert, Zou Jun, Ramani Sasirekha, Jiang Baoming, Gewirtz Andrew T
| 期刊: | Cellular and Molecular Gastroenterology and Hepatology | 影响因子: | 7.400 |
| 时间: | 2024 | 起止号: | 2024;18(5):101393 |
| doi: | 10.1016/j.jcmgh.2024.101393 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
