Novel environment exposure drives temporally defined and region-specific chromatin accessibility and gene expression changes in the hippocampus.

新的环境暴露会驱动海马体中染色质可及性和基因表达发生时间上和区域上的变化

阅读:8
作者:Traunmüller Lisa, Duffy Erin E, Liu Hanqing, Sanalidou Stella, Krüttner Sebastian, Assad Elena G, Sun Senmiao, Pajarillo Naeem S, Niu Nancy, Griffith Eric C, Greenberg Michael E
Exposure to novel environments (NE) induces structural and functional changes in multiple brain areas, including the hippocampus, driven in part by changes in gene expression. However, the cell-type-specific transcriptional and chromatin responses to NE remain poorly understood. We employed single-nucleus multiomics and bulk RNA-seq of the hippocampal DG, CA3, and CA1 regions of male mice to profile gene expression and chromatin accessibility following NE exposure. We observed region-specific responses in excitatory neurons and diverse transcriptional changes in inhibitory and non-neuronal cells. NE-regulated genes were enriched for secreted factors, and their cell-type-specific receptor expression highlighted candidate signaling pathways involved in learning and memory. We identified thousands of cell-type-specific chromatin accessibility changes, with coordinated expression and accessibility patterns implicating FOS/AP-1 as a key regulator. These data provide a rich resource of chromatin accessibility and gene expression profiles across hippocampal cell types in response to NE, a physiological stimulus affecting learning and memory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。