High-Density, Conformable Conducting Polymer-Based Implantable Neural Probes for the Developing Brain.

用于发育中大脑的高密度、可塑性导电聚合物基植入式神经探针

阅读:5
作者:Ma Liang, Wisniewski Duncan J, Cea Claudia, Khodagholy Dion, Gelinas Jennifer N
Neurologic and neuropsychiatric disorders substantially impact the pediatric population, but there is a lack of dedicated devices for monitoring the developing brain in animal models, leading to gaps in mechanistic understanding of how brain functions emerge and their disruption in disease states. Due to the small size, fragility, and high water content of immature neural tissue, as well as the absence of a hardened skull to mechanically support rigid devices, conventional neural interface devices are poorly suited to acquire brain signals without inducing damage. Here, the authors design conformable, implantable, conducting polymer-based probes (NeuroShanks) for precise targeting in the developing mouse brain without the need for skull-attached, rigid mechanical support structures. These probes enable the acquisition of high spatiotemporal resolution neurophysiologic activity from superficial and deep brain regions across unanesthetized behavioral states without causing tissue disruption or device failure. Once implanted, probes are mechanically stable and permit precise, stable signal monitoring at the level of the local field potential and individual action potentials. These results support the translational potential of such devices for clinically indicated neurophysiologic recording in pediatric patients. Additionally, the role of organic bioelectronics as an enabling technology to address questions in developmental neuroscience is revealed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。