Molecular treatments to reduce catabolic effects in human meniscus explant models.

利用分子疗法减少人类半月板外植体模型中的分解代谢效应

阅读:6
作者:Sjögren Amanda, Lindblom Karin, Turkiewicz Aleksandra, Englund Martin, Önnerfjord Patrik
OBJECTIVES: 1. To validate catabolic meniscus explant models induced by cytokines: interleukin-6 ​+ ​interleukin-6 receptor ​+ ​tumor necrosis factor alpha (IL6/TNF) and oncostatin M ​+ ​tumor necrosis factor alpha (OSM/TNF). 2. To evaluate three potential anti-catabolic treatments: i) dexamethasone (DEX), ii) a Link-N peptide (Link-N) and iii) a peptide from chondroadherin (CKF). DESIGN: Healthy lateral menisci from deceased donors (n ​= ​6; age ​= ​25-70 years, 4 males, 2 females), were sliced and randomized for experimental groups (combinations of the catabolic models and anti-catabolic treatments) and a control group. Culture media were analyzed, every third day until day 18, by mass spectrometry-based proteomics. Linear mixed effect models were used to estimate differences in protein abundances between groups. RESULTS: A total of 662 proteins were identified in all menisci. Cytokine-treated meniscus explant models showed increased release of osteoarthritis-related proteins such as matrix metalloproteinases (MMPs). For example, MMP1: IL6/TNF vs. ctrl; log2 fold-change 2.2 95 ​% confidence interval [1.8, 2.5] and OSM/TNF vs. ctrl; log2 fold-change 2.8 [2.4, 3.1]. There was no treatment effect in explant meniscus with the addition of either Link-N or CKF. Treatment effects were, however, evident with the addition of DEX. For example, MMP1: IL6/TNF ​+ ​DEX vs. ctrl; log2 fold-change -1.8 [-2.2, -1.4] and OSM/TNF ​+ ​DEX vs. ctrl; log2 fold-change -0.3 [-0.7, 0.04]. CONCLUSION: We confirmed that both catabolic models induce changes in osteoarthritis-related proteins. DEX treatment is effective in mitigating the catabolic response in meniscus explant models and may be further explored for its effects in the treatment of meniscus degeneration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。